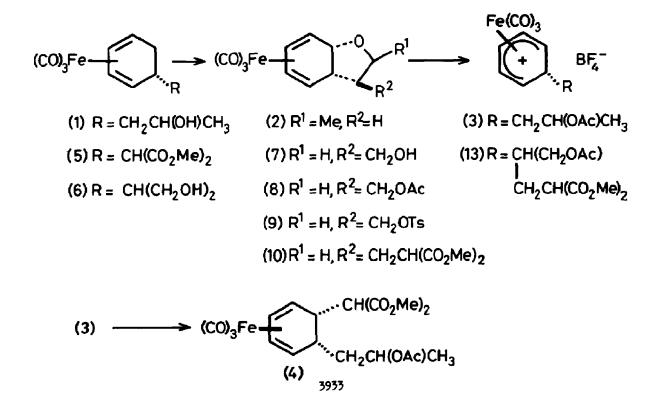
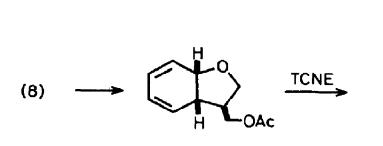
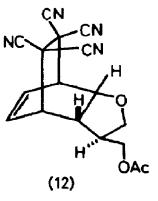
Tetrahedron Letters V₀1. 21, pp 3933 - 3936 © Pergamon Press Ltd. 1980. Printed in Great Britain


0040-4039/80/1001-3933\$02.00/0

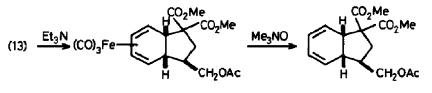
STEREOCONTROLLED APPROACHES TO SUBSTITUTED TETRAHYDROFURAN AND <u>cis</u>-HYDRINDENE DERIVATIVES VIA CYCLOHEXADIENE-Fe(CO)₃ COMPLEXES.¹

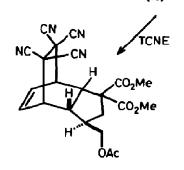
by Anthony J Pearson* and Malcolm Chandler University Chemical Laboratory, Lensfield Road, Cambridge, CB2 1EW


<u>Abstract</u>: Oxidative cyclisation of the diol complex (6) followed by removal of Fe(CO)₃ gives a single tetrahydrofuran derivative (7). Intramolecular nucleophile reaction of the salt (13) leads to cis-hydrindene derivative (14).


We recently described the reaction of cyclohexadiene-Fe(CO)₃ complex (1) with thallium(III) trifluoroacetate (TTFA), giving high yield of the oxidatively cyclised complex (2). Treatment of (2) with $\text{HBF}_4/\text{acetic anhydride gave the dienylium complex (3) in high yield which could be reacted stereo- and regiospecifically with scdiodimethylmalonate to give (4), but in rather low yield (30-40%).²$

Interest in tetrahydrofuran derivatives carrying functionalised substituents with defined relative stereochemistry, owing to their potential usefulness as intermediates for a number of interesting natural products, e.g. polyether antibiotics,³ led us to examine this reaction with a complex carrying a bifunctional substituent. Furthermore, we wished to complement our recent studies on intramolecular nucleophile additions, resulting in spirocyclisation,⁴ by examining annulation reactions of salts such as (3) but bearing an enolisable group in the substituent R.


For the present model study the gem diester (5), m.p. $171-172^{\circ}$, was chosen as the starting point, since it was readily prepared from tricarbonylcyclohexadienyliumiron tetrafluoroborate⁵ and sodiodimethylmalonate, 6,7 Reduction with DIBAL (4.8 equiv., THF, 25°C o/night, 96%) gave the diol (6), m.p. 110-111⁰, v_{max} (CHCl₃) 3620, 3500, 2050 and 1980 cm⁻¹. Treatment of (6) with TTFA (1.7 equiv.) in the presence of NaHCO₃ (4.0 equiv., EtOH, -10^oC) gave, after extractive work-up and chromatography, the cyclised product (7) (60%) as a single crystalline stereoisomer (n.m.r.) m.p. $121-122^{\circ}$, v_{max} (CHCl₃) 3620, 3430, 2060 and 1985 cm⁻¹. The stereochemistry was assigned on the basis of steric considerations, the substituent R^2 occupying the less hindered face of the tetrahydrofuran ring. Acetylation of (7) (Ac₂O, $C_{g}H_{g}N$, 25°C, o/night) gave the acetate (8), m.p. 82.5-83.5°C. Synthesis of a tetrahydrofuran derivative would require removal of the Fe(CO), group without aromatisation, and this was achieved in excellent yield using anhydrous trimethylamine-N-oxide 8 (benzene, 25 $^{
m o}$ C, 24 h, 98%), to give the diene (11) as a colourless oil v_{max} (CHCl₃) 1735 cm⁻¹. Reaction of this compound with tetracyanoethylene (benzene, 25°C, 2 h) gave the crystalline cycloadduct (12), m.p. 185-186.5°C, v_{max} (CHCl₃) 2240, 1745 cm⁻¹, (60% after p.l.c.).


(11)

We next turned our attention to using the primary alcohol moiety in (7) as a means of introducing an enclisable group. Conversion to the tosylate (9), m.p. 88-89^oC, proceed smoothly (2 equiv. TsCl, $C_{g}H_{g}N$, $O^{o}C$, 3 h, 97%) and this was treated with potassiodimethylmalonate (^tBuOK, CH₂[CO₂Me]₂, 4 equiv., dioxan, reflux 24 h, 88% + 12% rec. SM) oil to afford the diester (10), v_{max} 2060, 1980, 1750 and 1735 cm^{-1} . This compound was converted to the tetrafluoroborate (13) v_{max} (CH₂Cl₂) 2130, 2090, 2070 cm⁻¹, using aqueous tetrafluoroboric acid in excess acetic anhydride (CARE: admixture of these two reagents is exothermic). We were now in a position to examine the cyclisation of (13), which would constitute only the second example, so far as we are aware, of intramolecular carbon nucleophile addition to $cyclohexadienylium-Fe(CO)_{2}$ complexes. Treatment of (13) with 1,5-Diazabicyclo-[5.4.0] undec-5-ene (1 equiv., CH_2Cl_2 , $-78^{\circ}C$) led to instantaneous disappear-ance of the infrared bands at 2130, 2090 and 2070 cm⁻¹ (dienylium-Fe(CO)₃) with the appearance of two new bands at 2050 and 1975 cm^{-1} , and formation of one major compound (t.l.c.). Although the crude n.m.r. spectrum suggested the presence of the desired complex (14), there was also present an impurity (aromatic, δ 7.08-7.40) which persisted even after repeated preparative layer chromatography. Consequently the crude product was treated directly with Me₃NO (benzene, 25^oC) to give the free ligand (15) as an oil, v_{max} (CHCl₃) 1730 cm⁻¹. Treatment of this with TCNE in benzene at 25° C for 2 h gave the adduct (16) as a crystalline compound, m.p. 116-119⁰C. Thus, we have evolved a new annulation procedure suitable for the construction of cis-hydrindenes, a ring system present in a number of natural products, not the least important of which are the gibberellins. We are examining the generality of this procedure applied to more appropriately substituted examples.

(14)

(15)

<u>Acknowledgements</u>: We are indebted to the Science Research Council for financial support.

References

- 1. Organoiron Complexes in Organic Synthesis, Part 12. Part 11, A.J. Pearson and D.C. Rees, preceding paper.
- 2. A.J. Pearson, J.C.S. Chem. Comm., 1980, 488.
- Reviews: J.W. Westley, Ann. Rep. Med. Chem., (1975), <u>10</u>, 246; B.C. Pressman, Ann. Rev. Biochem., 1976, <u>45</u>, 601; J.W. Westley, Adv. Appl. Microbiol., (1977), <u>22</u>, 177. Syntheses: D.B. Collum, J.H. McDonald, III, W.C. Still, J. Am. Chem. Soc., 1980, <u>102</u>, 2117, 2118, 2120, and references cited therein. R.E. Ireland, S. Thaisrivongs and C.S. Wilcox, <u>ibid</u>., 1980, <u>102</u>, 1155, and references cited therein.
- 4. A.J. Pearson, J.C.S. Perkin I, 1980, 400.
- 5. E.O. Fischer and R.D. Fischer, Angew. Chem., 1960, 72, 919.
- 6. See, for example, A.J. Pearson, J.C.S. Perkin I, 1977, 2069.
- 7. All new compounds were obtained as racemic mixtures and gave satisfactory spectroscopic and analytical data. Formulae indicate relative stereochemistries.
- 8. Y. Shvo and E. Hazum, J.C.S. Chem. Comm., 1974.

(Received in UK 28 July 1980)